3.465 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=139 \[ \frac{(A+2 B-5 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{(A+2 B-5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac{(B-4 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(A-B+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

-(((B - 4*C)*EllipticE[(c + d*x)/2, 2])/(a^2*d)) + ((A + 2*B - 5*C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + ((A
 + 2*B - 5*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A - B + C)*Cos[c + d*x]^(3/2)*
Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.34334, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.116, Rules used = {3041, 2977, 2748, 2641, 2639} \[ \frac{(A+2 B-5 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{(A+2 B-5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac{(B-4 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(A-B+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^2,x]

[Out]

-(((B - 4*C)*EllipticE[(c + d*x)/2, 2])/(a^2*d)) + ((A + 2*B - 5*C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + ((A
 + 2*B - 5*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A - B + C)*Cos[c + d*x]^(3/2)*
Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx &=-\frac{(A-B+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{\sqrt{\cos (c+d x)} \left (\frac{3}{2} a (A+B-C)+\frac{1}{2} a (A-B+7 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=\frac{(A+2 B-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{\frac{1}{2} a^2 (A+2 B-5 C)-\frac{3}{2} a^2 (B-4 C) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a^4}\\ &=\frac{(A+2 B-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{(A+2 B-5 C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}-\frac{(B-4 C) \int \sqrt{\cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac{(B-4 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{(A+2 B-5 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{(A+2 B-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 6.72864, size = 1347, normalized size = 9.69 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^2,x]

[Out]

((-I/2)*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)
*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x
)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1
+ E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(
2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] +
 I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[c
 + d*x])^2 + ((2*I)*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4
, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[
c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c
] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c]
)^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x
)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/
(a + a*Cos[c + d*x])^2 - (2*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - Arc
Tan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^
2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1
+ Cot[c]^2]) - (4*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]
]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*
Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2
]) + (10*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec
[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x -
 ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos
[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*((-4*(-B + 2*C + 2*C*Cos[c])*Csc[c])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(
B*Sin[(d*x)/2] - 2*C*Sin[(d*x)/2]))/d + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*
Sin[(d*x)/2]))/(3*d) + (2*(A - B + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])^2

________________________________________________________________________________________

Maple [B]  time = 0.288, size = 507, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+12*B*cos(1/2*d*x+1/2*c)^6+4*B*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x
+1/2*c)^3+6*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))-24*C*cos(1/2*d*x+1/2*c)^6-10*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2
+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-24*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*A*cos(1/2*d*x+1/2*c)^4
-20*B*cos(1/2*d*x+1/2*c)^4+38*C*cos(1/2*d*x+1/2*c)^4-3*A*cos(1/2*d*x+1/2*c)^2+9*B*cos(1/2*d*x+1/2*c)^2-15*C*co
s(1/2*d*x+1/2*c)^2+A-B+C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/
2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) +
 a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^2, x)